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STATISTICSFOR THE SOCIAL SCIENCESl

by
Henry F. Magalit2

FOREWORD

Some of the natural sciences have developed for centuries
without the use of statistics. But this seems to be primarily a mat­
ter of good fortune or, to give these scientists credit for their own
efforts, a relatively satisfactory control over disturbing elements of
the environment. If carefully controlled laboratory conditions
prevail there is less practical need for statistical techniques. To the
social scientist, statistics is indispensable since he does not have
control over all important relevant variables. He has to rely on
statistical control since some variables are beyond his manipulative
(or experimental) control. Unfortunately, in much social science
research, control of the independent variables cannot be done
experimentally (or by design) since his data is nonexperimental.
The independent variables have already "occurred" and the
investigator cannot control them directly by design.

This paper is an attempt to outline the statistical techniques
that are available to the social scientists. However, since statistics
may be considered a common kit of tools for describing and
analyzing data of various disciplines, the statistical techniques
outlined here can also be applied by the biologists and other
natural scientists.

Introduction

The basic purpose of science is to explain natural phenomena
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by discovering and studying the relations among the variables
involved. Most social science research attempts to explain and/or
predict a set of dependent variables, describing natural pheno­
mena, using a set of "independent" variables. The set of
independent variables is further divided into (a) variables that
explain and/or predict the dependent variables and (b) control
variables. The variables are related as given in figure 1.

t-

Independent Variables.

Explanatory or Dependent
Predictor •
Variables Variables

L Control
Variables

••

•

•

Relations Among Variables
Figure 1

Since the statistical techniques that can be used depend on the
levels of measurement, the researcher should endeavor to have his
dependent variables measured numerically (interval or ratio scale)
to be able to use powerful tests. Let us now have a preview of the
topics presented in this paper .

We first considered the criteria in choosing an appropriate
statistical test. Then the relation between measurements and
statistics is discussed. Various statistical techniques are then
presented and tabulated for convenience.

Various multivariate techniques are mentioned, starting with
the most commonly used and often misused, the contingency
tables. Multiple regression is next discussed using the generalized
inverse procedure as well as the various techniques it uses such as
all possible regression, stepwise regression, stagewise regression,
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and autoregression. Problems of regression such as correlated
predictor- variables, nonlinearity, unequal variances and sampling
design effect of complex survey data are discussed next.

The different techniques for reducing the number of variables
are then presented; namely, principal component and factor
analysis. Canonical correlation and multivariate analysis of
variance are discussed very briefly. Strengths of multiple regression
summarized. Finally, several examples are presented.

Choosing an Appropriate Statistical Test

In choosing a statistical test we must consider the manner in
which the sample was drawn, the nature of the population from
which the sample was drawn, the kind of measurement or scaling
which was employed in the operational definitions of the variables
involved, the hypothesis being tested and lastly, but not the least,
the power of the test compared with alternative tests.

When we have asserted the nature of the population and the
manner of sampling, we have established a statistical model. Witlt
every statistical test we associate a model and a measurement
requirement. The model and the measurement requirement specify
the conditions under which the test is valid. The conditions of the
statistical model of a test are often called the "assumptions" of
the test.

It is obvious that the weaker the assumptions that defme a
particular model, the less qualifying we need to do about our
decision arrived at by the statistical test associated with the model.

However, the most powerful tests are those which have the
strongest assumptions. The t or F tests both parametric tests, for
example, are. the most likely of all tests to reject Ho when Ho is
false if the assumptions are tenable. That is, when research data'
may appropriately be analyzed by a parametric test, that test will
be more powerful than any other in rejecting Ho when it is false.
However, measurement must be at least in an interval scale for
parametric tests to be valid. Differ.ent tests require measurement
of different levels. The basic notions in the theory of measurement
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must be known in order to understand the measurement test
requirements of the various statistical tests.

Measurement and Statistics

The levels of measurement are: nominal, ordinal, interval and
ratio. The arithmetic operations allowable on a given set of scores
are dependent on the level of measurement.

It should be noted that these various levels of measurement
themselves form a cumulative scale. An ordinal scale possesses all
the properties of a nominal scale plus ordinality. An interval scale
has all the properties of an ordinal scale plus a unit of
measurement. The cumulative nature of these scales means that it
is always legitimate to drop back one or more levels of
measurement on analyzing the data. Sometimes this will be
necessary when statistical technique are either unavailable or
unsatisfactory in handling the variable of a high level of
measurement. However, we lose information in doing so because
we can no longer consider differences.

Can we go up the scale of measurement say, from ordinal to an
interval scale? We are often tempted to do so since we would be
able to make use of more powerful statistical techniques. The use
of a particular statistical (mathematical) model presupposses that a
certain level of measurement has been obtained. If statistical
techniques which assume strong levels of measurement are used
on weak levels of measurement, the result of which should be
considered approximate rather than exact and some caution must
be exercised in making conclusions.

Statistical Techniques

Let us now consider the two sets of tests; namely, parametric
and nonparametric. A parametric statistics test is a test whose
model specifies conditions about the parameters of the population
from which the research sample was drawn. Since these conditions
are not ordinarily tested, they are assumed to hold. The
meaningfulness of the results of a parametric test depends on the
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,
validity of these assumptions. A non-parametric statistical test uses
a model which does not specify conditions about the parameters
of the population from which the sample was drawn. Nonpara­
metric tests do not require measurement so strong as that required
for the parametric tests which is at least an interval scale. There
are nonparametric tests for both ordinal and nominal scale. The
t-test assumes that the observations in the sample come from a
normally distributed population and measured at least in an
interval scale. If these two assumptions are not tenable, for the
one-sample case we have the Binomial and Chi-square tests when
the measurement is nominal; and Kolmogorov-Smirnov test when
the measurement is ordinal.

For the two-sample case and when the samples are related, we
have the McNemar test, when the measurement is nominal; and
the Wilcoxon signed-rank tests when the measurement is ordinal.
Also when we are not willing to assume normality, we can use the
Walsh test and the randomization test for matched pairs. We have
the matched pairs t-test as the parametric counterpart of all these
tests.

When the two samples are independent and the variances of
the two populations are assumed equal we have the parametric
t-test. When the variances of the populations are assumed unequal
we have the weighted t-test of Cochran and Cox. We have a lot of
non parametric tests for this case. The most popular of these are
the Mann-Whitney U and Kolmogorov-Smirnov tests.

For three or more populations and the samples are related we
have the two-way classification analysis of variance (AOV) and

.when the samples are independent we have the completely
randomized design or one-way classification AOV. Both are
parametric and use analysis of variance technique. When the
samples are related and the measurement is nominal we have
Cochran Q test; and when the scale is ordinal we have Friedman
two-way analysis of variance. When the samples are independent
and the scale is nominal we can again use the Chi-square test; and
when the scale is ordinal we have Kruskal-Wallis one-way analysis
of variance.
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For nonparametric measures of correlation we have the
contingency coefficient when the scale is nominal; and Spearman
and Kendall rank correlations when it is ordinal. If we want the
correlation of two variables in the ordinal scale holding the rest of
the variables fixed we have Kendall partial rank correlation.
However, we do not have test of significance using Kendall's
partial rank correlation, since its sampling distribution is not
known .

The parametric measures of correlations are Pearson's product­
moment (simple) correlation coefficient, partial correlation, mul­
tiple correlation coefficients, and canonical correlations. Factor
analysis can also be used to examine patterns of correlation or
dependence structure. Patterns of correlation are also examined
using partial correlations; however, these are in terms of the
observed variables rather than the conceptual variables used in
factor analysis. Partial correlation will give us an estimate of the
strength of association between any two variables removing the
effect of the other variables. Multiple correlation measures the
association between the dependent variable and a set of predictor
variables. The correlation between two sets of variables are known
as cannonical correlation.

For examining the dependence structure of the variables
(dependent as well predictor) we have principal component
analysis and factor analysis. The principal component is used to
find the linear combination of the variables with "large" variance
while factor analysis is a method of reducing a large number
variables to a small number called latent variables or factor.

In problems of explanation and prediction where we are
interested in one dependent variable as function of several
predictor variables we have multiple (linear) regression which uses
as tools (a) all possible regression (b) stepwise regression (c)
stagewise regression (d) autoregression and (e) weighted regression.
We also have nonlinear regression if the relation between y and the
predictor variables is nonlinear. For discrimination classification
problems we have discriminant analysis and cluster analysis.
Finally when we have more than one dependent variable, multiple
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Two-sample case K-sample case NONPARAMETRIC
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LEVEL OF Related Samples Independent samples Related samples Independent samples CORRELA T/ON
MEASUREMENT

Binomial McNemar Fisher Cochran Q Contingency
NOMINAL

X
2

X
2

X
2

Median
Mann-Whitney U Friedman Median Spearman rank

Kolrnogorov-Smirnov Sign Kolmogorov Smirnov two-way Kruskal·Wallis correlation
RDINAL Runs Wilcoxon Wald-Wolfowitz AOV one-way AOV Kendall rank

Moses correlation
Kendall partial

rank correlation

Walsh
INTERVAL Randomization Randomization

OR

RATIO MEASURES OF
PARAMETRIC STA TIST/CAL TESTS CORRELATION

Z-test Simple correlation
paired t-test t-test RCB CRDor Partial correlation

t-test Two-way classifi- One-way classifi- Multiple correlation
weighted t-test cation AOV cation AOV

o

MUL T/VARIA TE STA T/STICAL TECHNIQUES

Multiple (Linear) Regression Multivariate Analysis of Variance
a) Multiclassification AOV Multivariate Contingency Analysis
b) All possible Regression Principal Component Analysis
c) Stepwise Regression Factor Analysis
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linear regression analysis may be generalized to multivariate
analysis of variance.

Multivariate Contingency Tables

Data which are categorical are usually presented in two-way
tables. Sometimes three-way, or even four-way tables, have been
given but difficulties of tabulation, printing and especially
interpretation have prevented, or at least restricted, tabulations by
more than two variables at a time.

There are three fundamental problems in the analysis of
multiple contingency. One is to set up a measure of relationship
between two or more variables. This is usally done by the use of
the x2 statistic. The other is to find one's way through a maze of
possible hypotheses in a systematic manner. Lastly, there may be a
shortage of cases and it is frequently necessary to control one
relevant variable at a time. When we come to a three-way table,
(say of variables A, B, C) there are 17 hypotheses to test, of which
4 are trivial. They may be exhibited as follows:

•
•I

~

•• A A,B A,B,C

B A,C

C B,C

AB AB,C

AC AC,B

BC BC,A

AB,AC

AC,BC

BC,AB

ABC

•

•

Here, for example, A,B refer to a hypothesis based on fixing
the univariate margins of A and B. AB represents the hypothesis
that the entire three-way table is determined by the joint
distribution of A and B. AB,AC is a test fixing the two-way
margins AB and AC. The test that a single variable A explains the
entire table is trivial: it simply tests whether the frequencies in the
same category of A are all equal within sampling limits. Similarly
for B and for C. Likewise model ABC (which is added for
completeness) requires no test because it fixes all the cells in the
table; it is referred to as the "saturated" model. The other 13,
however, may be of interest. For example, a test based on AB,C is
similar to the test of partial correlation -, are A and B dependent
when the effect of C is abstracted?
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•
The number of possibilities to be examined increases alarm­

ingly with the number of dimensions. For four-way tables there
are 167 and for five-way tables there are thousands.

The subject developed fast recently and there exists an
extensive literature on the subject. Reference may be made to
Goodman (1973), Plackett (1974), Kendall (1975), and Bishop et •
al (1975).

•
Multiple Regression l

(2)

Consider the linear regression model in matrix notation.

y = X (j + e (1)

where Y is an n x 1 random observed vector of the dependent
variable

X is an n x p matrix of known fixed quantities

{3 is a p x I vector unknown parameters

e is a n x 1 random vector n is the sample size and p ~ n.

We assume the following for estimation purpose:

E (e) = 0, E (e e') = I a2

and X has rank k ~ p and a2 is unknown.

By least squares the resulting normal equations are:

(X' X) {r =X' Y.

A solution for the above is

~ = (X' X)- X' Y (3)

where (X' X)- is a generalized inverse of X' X if k < p. If k =P
then (X' X)- is equal to (X' X) -1, the ordinary inverse.

One advantage of using a generalized inverse in solving (2) is
that no restrictions are needed even with nominal predictor
variables to be able to get a solution. Another advantage is that it
can handle multicollinearity problem of regression.
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With nominal predictor vananles we may solve (2) without
using a generalized inverse by imposing p - k restrictions on it,
(Magalit, 1977). It can be shown that these two methods are
equivalent and that by imposing restrictions on (2) we can use any
ordinary multiple regression computer program without the added
complexity of having to use a generalized inverse procedure .

Let us take a look at one property of a generalized inverse. A
generalized inverse has the following property.

(4)(X' X) (X' X)- =
pxp pxp [

100 0]
o 1 0 0
o 0 1 0
0 0

p x p

where X' X is a p x p matrix of rank k < p. The right-hand-side of
equation (4) is a diagonal matrix with diagonal elements of k ones
and p - k zeroes, while the off-diagonals are all zeroes.

With nominal predictor variables the estimate of each re­
gression coefficient is biased. However, there are linear functions
of ~ that are not biased and these are the functions that
researchers are usually interested in anyway. For example, the
contrast of the regression coefficients of a nominal variable is
unbiased. (See Magalit, 1977).

Let us now discuss how we will select the numerical predictor
variables in regression.

In a theoretical sense the all possible regression is best in that
it enables us to "look at everything". It can be recommended if we
have not more than five predictor variables. However, for 10
predictor variables, the amount of computer time and the sheer
physical effort of examining all the computer printouts is
enormous since there are 1023 equations to look at.

The stepwise is one of the best variable selection procedure
and its use is recommended. However, it can easily be abused by
the user. As with all the procedures, sensible judgment is still

•
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•
required in the initial selection of variables and in the critical
examination of the model through examination of residuals
whenever feasible.

Complexity is encountered in realistic nonexperimental re­
search where one needs to allow for reciprocal causation. We have
assumed that the choice of dependent variables is not problematic
and that there are no feedback effects from the dependent to
predictor variables. Although we have allowed for the possibility
of intercorrelated independent variables by using the stepwise
procedure, we have not considered models that attempt to
account for these intercorrelations by taking some of the
~

"predictor" variables as functions of the others. These topics have
been studied in considerable detail by econometrician in con­
nection with simultaneous equations, (J ohnton, 1972). This type
of problem is handled by stagewise regression technique.

In time series data where the errors are correlated we have
auto-regression technique, (Fuller, 1971).

For a comprehensive discussion on multiple regression in
behavioral research, see Kerlinger and Pedhazur (1973).

If the functional relation between numerical predictor varia­
bles and the dependent variable is not known, the nonlinearity in
regression may be tested by the following approximate F test.

Non-Linearity in Regression

If the regression equation happens to be linear in form, we can
expect that the Y.j, mean for given X, will all fall approximately
on the least-squares lines so that it will make little difference
whether deviations are taken about the category means or the
least-squares line. Kalton (1966) has shown that one loses very
little precision by categorizing a numerical variable into a set of
classifications. If, for instance, a predictor has a linear relationship
with a dependent variable accounting for P percent of its variance,
then a categorization into as few as five subclasses of the predictor
variable will account for ninety-five percent of that potential P
percent, and ten subclasses will account for ninety-nine percent of

•.'1
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the total possible. And if, in fact the relationship is not linear, a
categorized variable may easily account for more of the total
variance than a linear regression using the full numerical detail. If
the relationship is non-linear, then for at least some of the
categories, the sum of squares about the category mean will be
quite a bit smaller than that the least-squares line. Thus the
proportion of variation explained by the categories will be larger
than the proportion explained by the least-squares line unless the
true relationship is linear.

By fitting a categorized predictor variable we have

Among Categories SS

Total SS
(5)

and by fitting a least-squares line we have

Regression SS

Total SS
(6)

If the relationship between the predictor and the dependent
variable is non-linear E2 > r2 and we can test for non-linearity by
the following analysis of the variance table with one predictor
variable.

Table 1. Analysis of Variance Test for Non-Linearity

Total n-l ~(y -yp
Explained by
linear model 1 r2~(y - Y)2
Additional

(E2 _ r2) (n - k)explained
k-2 (E2 _ r2)~(y _ 9)2

(E2 _ r2) ~(y _ 9)2

by non-linear k - 2 (1 - E2)(k - 2)
model (1 - E2) ~y - Y)2
Error n-k (1 - E)2 ~y _ y)2

n - k

•

•

•

SV df ss MS F
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The above analysis can easily be extended to p predictor
variables as in the example to be given later. However, it must be
emphasized that the test is only an approximate one.

•

Correlated Predictor Variables

If predictors are positively correlated to one another and both
positively (or negatively) correlated with y, they overlap since the
two considered together would explain less than the two, each
considered separately. Figure 2 presehts this schematic form. The
total area covered by the two circles is less than the sum of their
individual areas because they overlap.

On the other hand, it works in the opposite fashion if the
predictors are negatively correlated to each other and are
positively (or both negatively) correlated to the dependent
variable. Together they would explain more of the variations in
the dependent variable than the two considered separately.

Both of the cases can be explained fully by the following
equation.

(7)

••

••
'1

where RY12 is the multiple correlation of Y with Xl and X2.

ryl is the.correlation between Yand Xj ,

ry2 is the correlation between Yand X2.

rrz is the correlation between Xl and X~.

From the equation we can see that as rl2 approaches I, ~.12
will be greater than I and the error sum of squares wilf be
negative. This is a collinearity problem and only one of the
predictor variable can be used in the equation. This problem can
be remedied by the use of a generalized inverse procedure in

•
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solving the normal equations. The stepwise regression procedure
may be used also for this type of problem.

Figure 12
Correlated Predicators

In practice however, perfect multicollinearity, r12 = I, is easier
to detect and seldom happens. The more problematic case is where
r12 is say .90 or .80, in which case R~ .12 < I, and are hard to
detect.

Weighted Regression and Sampling Design Effect

Consider again the matrix linear model (1).

Y=XI3+€

where Y is an n x p random observed vector of the dependent
variable

X is an n x p matrix of known fixed quantities

13 is a p x I vector of unknown coefficients (parameters)

e is an n x 1 random vector

and n is the sample size.

•

(8)



50 HENRY F. MAGALIT

•

where Wis a diagonal n x n matrix and

Wi is the weight associated with the i th sample.
n A

By least squares; that is, minimizing ~ Wi (Y, - yi)2 , we arrive at
the following normal equations: 1

(X' WX) {3 =X' WY (9)

A solution for the above equations is

~ = (X' WX)- X'WY (10)

where (X/WX)- is a generalized inverse of X/WX.

The above is encountered in survey data using unequal
probabilities of selection of the population units. With unequal
inclusion probabilities "1'i, i = 1,2, .. , N and using a simple linear
regression model one can easily arrive at the estimate of the slope
of the line as

•
•

and the intercept as

~ Wi Y, - b ~ wr Xi
a "'" ----------

b =

~ n n n
(~i Wi) ~ WiXiYi - (~Wi Xi) (~ Wi Vi)

n n n
(~ Wi) ~ w· X 2 - (~ W' x)21 ill

(11)

(12)

••

where Wi =

However, even for such a simple model the distributions of b
and a are already extremely difficult to find. As can be seen from
the above, inclusion of the survey design effect results in not only
complicated estimates but whose distributions are unknown.
However, there are now computer-based techniques for computing
standard errors of the estimates as mentioned in David's (1977)
paper. These are pseudo-replications (McCarthy, 1969), the
balanced repeated replications (Kish and Frankel, 1974), and the
Jacknife method (Cochran, 1977).

•
11

•
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Another case of the weighted least squares is encountered
when the observations have unequal variance and sometimes even
correlated. Let Y be the variance-covariance matrix of the e
Assuming that V-I exist the least squares estimate of ~ is

In practical problems it is often difficult to obtain specific
information on the form of Y at first. For this reason it is
sometimes necessary to make the (known to be erroneous)
assumption Y =I a2 and then attempt to discover something
about the form of Y by examining the residuals from the
regression analysis. Anscombe and Tukey (1963) and Anscombe
(1961) give some statistics for analyzing residuals. They deal with
three types of discrepancies; namely, (a) variance not constant (b)
linear effect of X not removed and (c) nonaddivity of the model.

where (X' Y - I X)- is a generalized inverse of X' y- I X. If the
weighted least squares analysis were called for but an ordinary
least squares were performed, the estimates obtained would still be
unbiased but would not have minimum variance, since the
minimum variance estimates are obtained from the correct
weighted least squares analysis (Draper and Smith, 1966).

An interesting, but complicated problem is to combine both
the survey design effects and the knowledge that the error
variances are unequal or even correlated. A least squares estimate
of {3 is

•
•

••

•

~ = (X' V-I X)- X' V-I Y

p = (X' WV-I X) -X' Wy-I Y

(13)

(14)

n A

They use the following statistics (a) T21 = ~ e~ Y' (b)
i 1

n ... n ...
T11 = ~i ei Y, and (c) T12 = ~ ei y2 for examining the foregoing

1

discrepancies, respectively. These statistics can also be used for
complicated models. The normality assumption can also be tested

• by the use of residuals.
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Principal Component Analysis

An examination of the individual correlations between pairs of
predictor variables is not sufficient. What is required is an analysis
of the whole set of correlations. One of the best method is to
compute the correlations matrix of the predictors and to
determine the constant known as latent roots or eigenvalues. Any
zero eigenvalue will imply a linear relations among some of the
predictors variables and therefore a redundancy among them. A
small eigenvalue indicates near collinearity among them and warns
that the coefficients are inflated. Should this situation arise it is
preferable to delete some of the predictor variables.

One important use of the principal component technique is
that of summarizing most of the variation in a multivariate system
in fewer uncorrelated variables. By partitioning the total variance
of all variables into successively small portions we determine the
new set of fewer uncorrelated variables called components. The
factorization of the covariance (or correlated) matrix is brought
about by transformation rather than as the result of a fundamental
model for covariance technique used in factor analysis. The
components are not invariant under changes is scale of the
variables.

Factor Analysis

This is a method for reducing a large number of variables to a
small number of presumed underlying latent variables called
factors. Factors are usually derived from the irttercorrelations
among the variables. If the correlations among the variables, are
zero or near-zero no factors can emerge. If, on the other hand,
the variables are substantially correlated, one or more factors
can emerge. It is a powerful tool for discovering underlying
relations among the variables and a multivariate method related
to multiple regression analysis. Each factor is a linear combina­
tion of the variables.

Factor A, for instance, can be written as

k
A =1: ai xi, ai is factor loading of i th variable.

i

•
•
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Thus the factors can be called dependent variable and the variables
as independent variables.

But the situation can be viewed differently. Any variable can
be conceived as a linear combination of the factor, say

Xi = ai A + a2 B + ••••••••

Here the factors are viewed as independent variables and the
variables as the dependent variable. Again, the similarity to
multiple regression is obvious.

Although factor analysis and multiple regression analysis
resemble each other, in general the two methods have quite
different purposes. Multiple regression's fundamental purposes are
to predict dependent variables and test research hypotheses.
Factor analysis, is used to discover unities or factors among many
variables and thus to reduce many variables to fewer underlying
variables or factors. Multiple regression explains a single known,
observed and measured dependent variable through the predictor
(independent) variables. Factor analysis explains many variables,
usually without independent and dependent variable distinction,
by showing their basic structure, how they are similar, and how
they are different. In addition, factor analysis almost always seeks
to name the components of the structure, the underlying factors.
This is an important scientific purpose.

There is now a maximum-likelihood procedure for estimating
the parameters from the model. Furthermore, the goodness of fit
of a solution with just m factors could be tested vigorously by the
generalized likelihood-ratio principle. Estimates of the parameters
can also be derived from the model without assuming multi­
normality in the model. Finally, for time series data a model for
covariance structure that links the observed variables to a latent
stochastic process is also possible, (Morrison, 1967).

Cannonical Correlation

Cannonical correlation is the generalization of multiple re-
• gression analysis to any number of dependent variables. This is not
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a large conceptual step but rather a large computational step.
Except for the simplest problems, it is so complex to make desk
calculator calculations forbidding. Intelligent and critical reliance
on the computer is necessary.

It is multiple regression analysis with p categorical variables
and m > I dependent variables. Through least squares analysis,
two linear composites are formed, one for the predictor variables,
Xi, and one for the dependent variables, Yj . The correlation
between these two composites is the cannonical correlation, Re .

It's square, Re
2 is an estimate of the variance shared by the two

composites.

Like the coefficient of multiple correlation, the cannonical
correlation coefficient is the maximum correlation possible be­
tween the two sets of variables. It also uses the least squares
procedure that seeks the regression weights (coefficient) to be
attached to each variables of both sets of variables. However, the
weights become a problem when more than one cannonical
correlation is calculated from the same set of data. The weights
then must be interpreted with great caution.

Multivariate Analysis of Variance

Analysis of variance with any number Ofindependent variables
and any number of dependent variables is called multivariate
analysis of variance. Like univariate analysis of variance, its pur­
pose is basically to test statistical hypothesis about group means of
more than one dependent variable. In univariate analysis of
variance, the total sum of squares is partitioned into groups and
within groups sum of squares. In multivariate analysis of variance,
say for two independent variables the sum of products, ~ Y1 Y2 is
also partitioned according to the independent variables into
between groups and within groups sums of product. The test of
statistical significance is used to determine whether the mean of
the two dependent variables, considered simultaneously are equal.
A multivariate F test, test the significance of mean differences m

. dimensionally, in this case two-dimensionally.

•
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Discriminant Analysis

In discrimination we are given the existence of two or more
populations (groups) and a sample of individuals from each. The
problem is to set up a rule, based on measurements from these
individuals, which will enable us to allot some new individuals to
the correct population (group) when we do not know from which
it emanates. We set up a function which will enable us to allocate
any freshly observed individual to the correct population (group).

The general problem is to set up a function which will give the
smallest possible frequency of misclassification when used as a
means of discrimination. Such a linear combination is termed a
discriminant function of the form:

Z = Al Xl + A2 X2 + •.•••• + Ap Xp

where Z is the standardized index

Xj , X2 , ••••• , Xp are the variables measured and

AI, A2, ••••• , Ap· are the corresponding weights.

A test can be made of the significance of the discriminant
function by means of the F test or Chi-square test.

As in regression there is also a problem of determining the
significance of the discriminating value of each Xi. This is done by
partial F tests.

Strengths of Multiple Regression Analysis

It is able to explain and/or predict events in the world in
which we live.

It is able to handle any number and kind (level of measure­
ment) of predictor variables.

It is often the best method of analysis of non-experimental
data. It can be used to control the effects of some variables while
studying the effects of other variables on the dependent variable.
Frequency and cross-tabulations analysis may be used but the
most it can intelligibly do is to present relations among three
variables at a time and such a three-way cross-tabulations are



56 HENRY F. MAGALIT

•-.

difficult to grasp and interpret. It can answer certain questions in
roundabout and often clumsy way.

It opens up research possibilities not available, at least not
generally and readily available, in the past by the use of dummy
variables in regression.

It is rich of various statistics to be used in the interpretation of
the data: namely, (a) R2 measures the overall relation between the
dependent variable and the predictor variables, in terms of propor­
tion of variations accounted for by all the predictor variables or
any subject of them.

The proportion of variance of any subset of predictor variables
can be tested for statistical significance using an F test. That is,
any set of variables (on each variable) may be tested whether it
significantly affects the dependent variable or not and (b)
estimates of regression coefficients are available and corresponding
t tests of their statistical significance.

Data in Examples

No data used in this paper consists of two independent
random samples of 225 trainees and 225 non-trainees, a survey
conducted by the National Manpower and Youth Council in 1977
under the direction of Ms. Racquel B. Goodrich.

The following socio-economic variables were gathered:

Y - Wage after training (or Jan. 1977), the dependent
variable.

•

fI

•

Xl - Educational level •
X2 - Work experience i>

X3 - Wage before training (before Jan. 1977)

X4 - Mobility

Xs - Need achievement score

X6 - Trainability

X7 - Type of industry

Xg - Migration Experience •
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X9 - Access to government agency

X10 - Regional Background

Xu - Socio-economic status of trainees

X12 - Socio-economic status of guardian

In example 1, the regression model for the trainees is
presented while the model for non-trainees is not included. Since
the distribution of the dependent variable, Y, is highly skewed and
has zero values, Y is transformed to log (Y + 1).

Example I
Nonlinearity in Regression

Analysis of Variance

SV df SS MS F

Total 224 1933.6632

Explained by linear., model 12 1577.5055

• Additional explained
by nonlinear model 33 344.6523 10.4440 162.42**

Error 179 11.5053 .0643

•
..

•

E2 = .9945 from nominal regression model

R2 = .8158 from numerical regression model

Additional explained by nonlinear model SS:

(E2 _ R2 ) :E (Y - \')2 =1922.1578 - 1577.5055 =344.6523

Since nonlinearity is highly significant it is recommended to use
nominal predictor variables rather than numerical predictors
variables in the model. This result shows that if one is in doubt of
the linearity of the relation between the predictor variables and
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the dependent variable it is better to use nominal predictor rather
numerical predictor variables in regression. This verifies Kalton's
result.

Nominal Variables Regression Model for Trainees
Analysis of Variance

•
SV df SS MS F. .'Total 224 1933.6632

. Categorical
Variables 45 1922.1578 42.7146 664.55**
Error 179 11.5054 .0643

Since "due to regression" is highly significant, a closer look at the
twelve nominal variables is necessary. This is given in the following
analysis of variance, the procedure of which was discussed in
Magalit (1977). •

Analysis of Variance for •
Each Nominal Variable

SV df Adjusted SS MS F

Xl 3 .0863 .0288 <1
X2 4 .2018 .0504 <1
X3 4 4.5219 1.1305 17.59*'" •X4 14 .7495 .1974 2.92*
X5 '4 ~ .2507 .0627 ' <1 ~

X6 2 .0692 .0346 <1
X7 5 835.5285 167.1057 2599.82**
X8 1 .0003 .0003 -o ,.
X9 9 1.2753 .1417 2.20*
XI0 1 .0324 .0324 <1
XlI 4 .4470 .1118 1.74
X12 4 .7716 .1929 3.00*
Error 179 11.5053 .0643

•
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The following variables significantly affected the wage after
training:

X3 wage before training

)4 mobility

Xs type of industry

X9 access to government agency

Xl2 socio-economic status of guardian

Scheffe's tests may be done for each of the above significant
nominal variables, (Magalit, 1977). The t tests for the k categories
of a nominal variable are not recommended because the tests are
not independent.

Looking at )4, mobility, no significant difference was found
using Scheffe's tests while several significant differences were
found using t tests.

Example 2
Discriminant Analysis

A discriminant function was derived for the two groups,
trainees and non-trainees.

The discriminant function is as follows:

Z = -.6661 Xs + .3683 X7 - .2827 Xl + .2389 X3

• - .2156 ~ - .1224 X. - .1078 Xs + .0697 X9

'. To test for the significance of the function, the chi-square
statistic was used.

• y2 = 224.88
~"tomp

X2.05 (8) = 15.507

•
Since X2 comp > X2 tab, therefore the discriminant function could
be used to discriminate between the two groups, trainee and
non-trainee and that the function could be used as well as to ,
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classify an unknown individual to the group to which it best
belongs.

The dividing point between the two groups was determined by
taking the mean of the groups (trainees is group 1 and non-trainees
is group 2). The dividing point is 32.4625, mean of Z.

Therefore if an unknown individual has measurements
XT ' Xr, ...., X; and we wish to know to which group (1 or 2)
this unknown individual belongs we compute Z*:

•
9

Z* = L Al X!I'
i = 1 1

,i ::1= 2.

and compare it with the dividing point. If Z* is less than or equal
to 32.4625, then the unknown individual belongs to group 1,
trainees, and if Z* is greater than 32.4625, then it belongs to
group 2, non-trainees.

Of the original 12 variables, only 8 were found to be
significant and sufficient to discriminate between the two groups,
trainees and non-trainees.

II

•

•
.'

•
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